

Background Controls for the DAMIC-M Dark Matter Search

Daniel Baxter

Topics in Astroparticle and Underground Physics September 9, 2019

Background Model for DAMIC Detectors

Background Controls for the DAMIC-M Dark Matter Search

Daniel Baxter

Topics in Astroparticle and Underground Physics September 9, 2019

CCD Introduction

- Interaction with silicon produces free charge carriers...
 - ...which are drifted across fully-depleted region...
 very little loss of charge
 - ...and collected in 15 micron square pixels... *exceptional position resolution*
 - ...to be stored until a user-defined readout time after many hours.
 large exposures
- The method of read-out can be optimized to improve read-out noise at the cost of read-out time

CCD Introduction

- Silicon band-gap: 1.2 eV
- Mean energy/e⁻: 3.8 eV

- As charges drift across the CCD, they experience lateral thermal motion (diffusion) proportional to vertical distance traveled (depth)
- Above 1 keV, the event profile can identify the progenitor...

Previous Limits from DAMIC at SNOLAB

• Limits set in 2016 after commissioning...

DAMIC at SNOLAB Fiducial Cut (2016)

GEANT4 Geometry

1

(

Decay Chains Simulated

	Parent Chain	Isoptopes Considered	Simulation ID	Comments
(not shown)	U238	Pa234	234a91z	
		Th234	234a90z	
Copper Cryostat	Ra226	Pb214	214a82z	
Outer Lead Shielding		Bi214	214a83z	
	Pb210	Pb210	210a82z	(surface and bulk)
		Bi210	210a83z	
Load	Th232	Ac228	228a89z	
Lead		Ra228	228a88z	
		Pb212	212a82z	
		Bi212	212a83z	$0.64 \ \mathrm{BR}$
		T1208	208a81z	0.36 BR
	K40	K40	40a19z	
Elex Cable	Activation	Co56	56a27z	(copper/flex/screws)
Thex cable		Co57	57a27z	
		Co58	58a27z	
× Electroformed		Co60	60a27z	
Copper Module		${ m Fe59}$	59a26z	
		Mn54	54a25z	
		Sc46	46a21z	
o Copper	Si32	Si32	32a14z	(silicon only)
S Modules		P32	32a15z	
	H3 (Tritium)	H3	3a1z	(silicon only)
	Na22	Na22	22a11z	(silicon only)

Simulations in GEANT4

Part	U-238	Ra-226	Pb-210	Th-232	K-40
CCD	< 0.53	< 0.43	<33	< 0.4	< 0.04
Kapton cable	5013.8 ± 423.4	420 ± 490	$420 \pm 490^{*}$	276.5 ± 42.0	2475.4 ± 172.8
Copper	< 10.7	$< 10.7^{*}$	2350 ± 720	$<\!3.5$	$<\!\!2.7$
Module Screws	1400 ± 3800	$<\!138$	2350 ± 720	200 ± 140	2400 ± 1300
Ancient lead shield	$<\!10.7$	$<\!25.9$	$2850 \pm 285^*$	$<\!\!2.8$	< 0.5
Outer lead shield	<1.1	<13*	1560000 ± 430000	< 0.4	<19

- We assay each component to determine its activity in decays/kg/day (above)
- We simulate the various isotopes in our detector and group them by decay chain (see previous slide)
- We constrain the amount of each to assays of that component

Constraints from Event Coincidence

Bulk Contamination

Surface Contamination

see A. Matalon presentation at LRT 2019 or A. Aguilar-Arevalo et al, JINST 10 (2015) P08014 [arXiv:1506.02562] for details

Fitting to Data

- Perform a 2D template **likelihood** fit in energy-sigma space
- Assume the probability of measuring k events given an expectation v from the ith energy bin and jth sigma bin is described by a Poisson distribution:

$$P(k_{ij}|\nu_{ij}) = \frac{e^{-\nu_{ij}}\nu_{ij}^{k_{ij}}}{k_{ij}!} \qquad \qquad \nu_{ij} = \sum_{l} C_{l}\nu_{ijl}$$

 Assign each template *l* a fit parameter *C_l* that scales it up or down and constrain these fit parameters according to material assays using a Gaussian constraint for each *n* measured activity constraint

$$LL = \sum_{i} \sum_{j} \left(k_{ij} \log(\nu_{ij}) - \nu_{ij} - \log(k_{ij}!) \right) - \sum_{n} \left(\frac{(N_n^o - N_n)^2}{2\sigma_n^2} \right)$$

Fit Results

- This gives us 53 templates in energy-sigma for each detector part and decay chain
- ...which we fit against the data above 6 keV
 - This implicitly assumes that we have no DM signal above 6 keV (DM mass > 10 GeV)
 - Each component is allowed to float within the uncertainty of the respective assay (or float freely down to zero if constrained by an upper bound)
- We use the fit above 6 keV to give us a background model for our WIMP ROI (0.05-6 keV)...

Result: Composition

- 20% of background comes from ³H production from silicon activation
- 20% of background comes from tritium in the getter
- 20% of background comes from ²¹⁰Pb
- 20% of background comes from OFC copper
- ...remaining 20% comes from a mixed bag of detector materials (mostly kapton cabling)

Checking the Result: Tritium

Checking the Result: Tritium

- We find 4 x10²¹ H/cm³ in the backside getter layer!
- If we assume tritium fraction in water (1 x10⁻¹⁸ ³H/H)...
- ...we calculate
 - 3 x10⁵ decays/kg/day
- The DAMIC@SNOLAB analysis gives
 - 1.3 ± 0.3 x10⁵ decays/kg/day (preliminary)
- Completely independent measurement!

Systematic Uncertainty: Pb-210

- We know there is a significant surface Pb-210 component to our background...
- ...but we don't know which surface.
- The fit prefers to put Pb-210 on the back of the active region
 - This corresponds to the back of what was the silicon wafer

Location	Bulk	Front	Back	Wafer	External
Preferred?	No	No	No	Yes	Yes

Systematic Uncertainty: Pb-210

- A back-side exponential rise is non-degenerate with a WIMP signal
 - <u>Solution</u>: Consider this a free parameter in the WIMP analysis to account for the systematic uncertainty of the ²¹⁰Pb location
- For DAMIC-M, this component must be removed...
 - <u>Criteria</u>: < 0.5 nBq/cm² on the wafer
- No need for a fiducial cut!

Comparison of Back Exponential and WIMP Signal

DAMIC at SNOLAB Background Model

• We randomly sample our background model (in E-z)...

- …apply our diffusion model to fake events…
- ...paste onto blank images to account for read-out noise...
- ...run the same clustering algorithm that is used on the data to account for efficiencies...
- …and output a background model in observed variables energy-sigma

DAMIC at SNOLAB Background Model

Looking forward: DAMIC-M

- Tritium will shield silicon to eliminate activation backgrounds and remove getter hydrogen
- **Pb-210** will properly clean all surfaces and control exposure to radon
- Copper will electroform all components near CCD and shield from activation
- **Cable** extensive research ongoing into clean cable and connector options
- Other (< 1 dru) need to better measure component activities (ongoing)
- <u>Removes ALL known backgrounds that we</u> <u>expect to contribute > 1 dru</u>
- Working now to better understand the contributions down to 0.1 dru

Topics in Astroparticle and Underground Physics (TAUP) 2019 – DAMIC – Daniel Baxter

Conclusions

- DAMIC at SNOLAB continues to produce excellent physics
 - see talk by Alvaro Chavarria
 - Paper on dark matter electron coupling: arXiv:1907.12628
 - Expect paper on DM-nucleon coupling soon...
- DAMIC-M will improve on this by orders of magnitude due to lower backgrounds, single electron resolution, and much larger exposure
 - see talk by Paolo Privitera

DAMIC Collaboration

DAMIC at SNOLAB

Low-Energy Sigma Validation

Ionization Efficiency

- Calibration using SbBe source with very low energy neutrons (< 24 keV)
- Ionization efficiency calibrated down to 60 eV!!!

Ionization Model

