Electronics for DAMIC-M

DAMIC-M kick-off meeting
june 11th-13th

Ph. Vallerand, J. J. Dormard, Ch Sylvia (LAL, IPN Orsay)
Electronics for DAMIC-M

• CCD Readout
 – Requirements
 – From DAMIC 100 to DAMIC-M
 – From ASPIC to CROC

• CCD Control
 – CABAC
 – New ASIC?

• Readout and Control board : ODILE
CCD readout : Requirements

• 4 channels, single ended in, differential out
• Work near the CCD at 140K (no packaging)
• Gain :

 CCD response is \(\sim 2.5\mu V/e^-\), full well is \(\sim 75ke^-\), ADC input swing is 6 or 8V.
 If we want to read full well, gain must be \(\sim 32\)
 If max event is \(\sim 15ke^-\), gain must be \(\sim 160\)
 \(\Rightarrow\) Programmable gain

• Noise :

 – Target is \(0.2e^-\), \((0.5\mu V)\)
 – Bandwidth : \(\sim 1MHz\)

• Read out :

 – Oversampled & digital filtered transparent mode (clamp & sample)
 – Dual Slope Integrator (oversampled or not)
From DAMIC 100 to DAMIC-M

• DAMIC 100 readout is DSI
 – Overall Gain \(G = A \times T/RC \)
 \(A \) : first stage gain, \(T \) : integration time, \(RC \) : integrator time constant

• Gain topology is not optimum for noise

• For best noise performance :
 – \(A \) must be maximum
 – \(T/RC \sim 1 \)

CCD + jFet + gain 2 amp
Amplifier \(G=16 \)
DSI
RC = 260ns
T ~ 20µs
ADC 18b
Overall gain $G=500$ \quad Integration time $T=25\mu s$

$A = 10$, $RC = 500$ns \quad \Rightarrow \quad RMS noise $=9.1\mu V$
Overall gain $G=500$
Integration time $T=25\mu s$

$A = 100$, $RC = 5\mu s$ \Rightarrow RMS noise $= 0.91\mu V$
FROM ASPIC to CROC

• **ASPIC** (Analogue Signal Processing IC) has been developed for LSST
 – 8 channels
 – Max gain: 13, max RC ~4µs
 – ASPIC is not optimized for DAMIC

• **CROC** (CCD ReadOut Chip)
 – Programmable gain up to 128 (first stage)
 – Programmable RC from 200ns to 50µs
CCD clocking and biasing

- **CCD needs many clocks:**
 - Vertical (Parallel) to move lines: 3 clocks + TG
 - 2 sets needed to move one half up & 2nd down
 - Current capability: \(\Delta V=8V, \, tr=2\mu s, \, C=100nF \rightarrow I=400mA \)
 - Horizontal (Serial) to move pixels: 3 clocks
 - 2 sets needed to move one half right & 2nd left
 - Low current capability
 - Reset Gate, Summing well + Skipper clocks

- **Power supply & Biases:**
 - Vdd (Output Drain) ~1mA each
 - Vreset (Reset Drain)
 - OG
 - Skipper CCD biases
CABAC: clocks and biases

- Provide:
 - Parallel and serial clocks; Reset Gate
 - CCD biases (OG, RD (=VR), GD, spare)
 - CCD amplifier power supply OD (=VDD)
 - Clocks & biases multiplexer for debugging purpose
 - Temperature sensor
 - Electronic calibration pulser
 - Can be translated wrt local ground to comply with CCD type
 - Techno CMOS 0.35µ HV
Parallel clocks

DAC : 255
Total load : 66nF
Amplitude : 9V
X talk ~400mV
Serial clocks

DAC : 255
Total load : 200pF
VDD_U : 5V
VDD_L : -4V
CABAC on DAMIC

- Board with 3 CABAC to control one CCD has been developed
- Programmable (10 bit) rails for clocks
- Programmable clocks current capability (slope)
- Programmable biases level (10 bit)
- Clocks triggered by lvds signals sent by FPGA
- Possibility to generate CCD Vsub
- Programmation done by SPI bus
- Board is tested, firmware and software to generate biases and clocks work
- Board will be used on one of our test bench
New CCD control ASIC?

- Modify CABAC with current sink biases capability
- Generation of programmable Clocks rails
- Increase the number of clocks
Readout & Control : ODILE

- ODILE : Online Digital Interface for Low noise Electronics
- Modular system : one board for one CCD
- Can be used as a single CCD camera readout & control
- One mother board with data link to the DAQ
 - One 4 channels readout daughter board
 - One CCD control daughter board
ODILE simplified synoptic

4 channels ADC board

Video data

FPGA

One CCD control board

Video

CCD + CROC

CROC prog & timing
CCD clock & biases

ADC timing

R & C prog
CCD timing
CROC timing

Central DAQ
ODILE mother board

• IDROGEN : IN2P3 open project of generic DAQ with FMC connector for specific application
 • Optical link up to 40Gb/s
 • Located in Xtca crate
 • Not enough onboard space for Damic application

• New FPGA evaluation board with onboard memory and 2 connectors for control & readout
Next step: CROC tests

- FPGA evaluation board with at least one dedicated connector
- One 4 channels ADC board
- Room temp CROC test board
 - Bounded CROC
 - Packaged CROC, clamshell support
- Cryo temp tests: CROC bounded on a board connected to CCD